ouisync/db/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#[macro_use]
mod macros;

mod connection;
mod id;
mod migrations;

pub use id::DatabaseId;
pub use migrations::SCHEMA_VERSION;

use tracing::Span;

use deadlock::ExpectShortLifetime;
use ref_cast::RefCast;
use sqlx::{
    sqlite::{
        Sqlite, SqliteConnectOptions, SqliteJournalMode, SqlitePoolOptions, SqliteSynchronous,
        SqliteTransactionManager,
    },
    Row, SqlitePool, TransactionManager,
};
use std::{
    fmt,
    future::Future,
    io,
    ops::{Deref, DerefMut},
    panic::Location,
    path::Path,
    time::Duration,
};
#[cfg(test)]
use tempfile::TempDir;
use thiserror::Error;
use tokio::{fs, task};

const ACQUIRE_TIMEOUT: Duration = Duration::from_secs(5 * 60);
const IDLE_TIMEOUT: Duration = Duration::from_secs(60);
const WARN_AFTER_CONNECTION_LIFETIME: Duration = Duration::from_secs(30);

pub use self::connection::Connection;

/// Database connection pool.
#[derive(Clone)]
pub struct Pool {
    // Pool with multiple read-only connections
    reads: SqlitePool,
    // Pool with a single writable connection.
    write: SqlitePool,
}

impl Pool {
    async fn create(conn_options: SqliteConnectOptions) -> Result<Self, sqlx::Error> {
        let conn_options = conn_options
            .journal_mode(SqliteJournalMode::Wal)
            .synchronous(SqliteSynchronous::Normal)
            .pragma("recursive_triggers", "ON");

        let pool_options = SqlitePoolOptions::new()
            // Disable the test as it breaks cancel-safety (also it's unnecessary in our case)
            .test_before_acquire(false)
            // Expire idle connections to conserve resources (threads, file descriptors)
            .idle_timeout(IDLE_TIMEOUT)
            .acquire_timeout(ACQUIRE_TIMEOUT);

        let write = pool_options
            .clone()
            .max_connections(1)
            .connect_with(conn_options.clone().optimize_on_close(true, Some(1000)))
            .await?;

        let reads = pool_options
            .max_connections(8)
            .connect_with(conn_options.read_only(true))
            .await?;

        Ok(Self { reads, write })
    }

    /// Acquire a read-only database connection.
    #[track_caller]
    pub fn acquire(&self) -> impl Future<Output = Result<PoolConnection, sqlx::Error>> + '_ {
        PoolConnection::acquire(&self.reads, Location::caller())
    }

    /// Begin a read-only transaction. See [`ReadTransaction`] for more details.
    #[track_caller]
    pub fn begin_read(&self) -> impl Future<Output = Result<ReadTransaction, sqlx::Error>> + '_ {
        ReadTransaction::begin(&self.reads, Location::caller())
    }

    /// Begin a write transaction. See [`WriteTransaction`] for more details.
    #[track_caller]
    pub fn begin_write(&self) -> impl Future<Output = Result<WriteTransaction, sqlx::Error>> + '_ {
        let location = Location::caller();

        async move {
            Ok(WriteTransaction {
                inner: ReadTransaction::begin(&self.write, location).await?,
            })
        }
    }

    pub(crate) async fn close(&self) -> Result<(), sqlx::Error> {
        // Make sure to first close `reads` and only then `write`. That way when closing the write
        // connection it is the last remaining connection and so it performs a WAL checkpoint and
        // removes the auxiliary db files (*-wal and *-shm).
        self.reads.close().await;
        self.write.close().await;

        Ok(())
    }
}

/// Database connection from pool
pub struct PoolConnection {
    inner: sqlx::pool::PoolConnection<Sqlite>,
    _track_lifetime: ExpectShortLifetime,
}

impl PoolConnection {
    // Internal
    async fn acquire(
        pool: &SqlitePool,
        location: &'static Location<'static>,
    ) -> Result<Self, sqlx::Error> {
        let inner = pool.acquire().await?;
        let track_lifetime = ExpectShortLifetime::new_in(WARN_AFTER_CONNECTION_LIFETIME, location);

        Ok(Self {
            inner,
            _track_lifetime: track_lifetime,
        })
    }
}

impl Deref for PoolConnection {
    type Target = Connection;

    fn deref(&self) -> &Self::Target {
        Connection::ref_cast(self.inner.deref())
    }
}

impl DerefMut for PoolConnection {
    fn deref_mut(&mut self) -> &mut Self::Target {
        Connection::ref_cast_mut(self.inner.deref_mut())
    }
}

/// Transaction that allows only reading.
///
/// This is useful if one wants to make sure the observed database content doesn't change for the
/// duration of the transaction even in the presence of concurrent writes. In other words - a read
/// transaction represents an immutable snapshot of the database at the point the transaction was
/// created. A read transaction doesn't need to be committed or rolled back - it's implicitly ended
/// when the `ReadTransaction` instance drops.
pub struct ReadTransaction {
    inner: PoolConnection,
    closed: bool,
}

impl ReadTransaction {
    // Internal
    async fn begin(
        pool: &SqlitePool,
        location: &'static Location<'static>,
    ) -> Result<Self, sqlx::Error> {
        let mut inner = PoolConnection::acquire(pool, location).await?;
        SqliteTransactionManager::begin(&mut inner.inner).await?;

        Ok(Self {
            inner,
            closed: false,
        })
    }

    // Internal
    async fn commit(mut self) -> Result<Committed, sqlx::Error> {
        SqliteTransactionManager::commit(&mut self.inner.inner).await?;
        self.closed = true;
        Ok(Committed(self))
    }
}

impl Deref for ReadTransaction {
    type Target = Connection;

    fn deref(&self) -> &Self::Target {
        self.inner.deref()
    }
}

impl DerefMut for ReadTransaction {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.inner.deref_mut()
    }
}

impl fmt::Debug for ReadTransaction {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ReadTransaction").finish_non_exhaustive()
    }
}

impl_executor_by_deref!(ReadTransaction);

impl Drop for ReadTransaction {
    fn drop(&mut self) {
        if !self.closed {
            SqliteTransactionManager::start_rollback(&mut self.inner.inner);
        }
    }
}

// Wrapper for a transaction that's been committed. This allows to delay releasing the underlying
// connection to the pool while disallowing using the connection to execute any db operations.
struct Committed(#[allow(dead_code)] ReadTransaction);

/// Transaction that allows both reading and writing.
///
/// At most one task can hold a write transaction at any time. Any other tasks are blocked on
/// calling `begin_write` until the task that currently holds it is done with it (commits it or
/// rolls it back). Performing read-only operations concurrently while a write transaction is in
/// use is still allowed. Those operations will not see the writes performed via the write
/// transaction until that transaction is committed however.
pub struct WriteTransaction {
    inner: ReadTransaction,
}

impl WriteTransaction {
    /// Commits the transaction.
    ///
    /// # Cancel safety
    ///
    /// If the future returned by this function is cancelled before completion, the transaction
    /// is guaranteed to be either committed or rolled back but there is no way to tell in advance
    /// which of the two operations happens.
    pub async fn commit(self) -> Result<(), sqlx::Error> {
        self.inner.commit().await?;
        Ok(())
    }

    /// Commits the transaction and if (and only if) the commit completes successfully, runs the
    /// given closure.
    ///
    /// # Atomicity
    ///
    /// If the commit succeeds, the closure is guaranteed to complete before another write
    /// transaction begins.
    ///
    /// # Cancel safety
    ///
    /// The commits completes and if it succeeds the closure gets called. This is guaranteed to
    /// happen even if the future returned from this function is cancelled before completion.
    ///
    /// # Insufficient alternatives
    ///
    /// ## Calling `commit().await?` and then calling `f()`
    ///
    /// This is not enough because it has these possible outcomes depending on whether and when
    /// cancellation happened:
    ///
    /// 1. `commit` completes successfully and `f` is called
    /// 2. `commit` completes with error and `f` is not called
    /// 3. `commit` is cancelled but the transaction is still committed and `f` is not called
    /// 4. `commit` is cancelled and the transaction rolls back and `f` is not called
    ///
    /// Number 3 is typically not desirable.
    ///
    /// ## Calling `f` using a RAII guard
    ///
    /// This is still not enough because it has the following possible outcomes:
    ///
    /// 1. `commit` completes successfully and `f` is called
    /// 2. `commit` completes with error and `f` is called
    /// 3. `commit` is cancelled but the transaction is still committed and `f` is called
    /// 4. `commit` is cancelled and the transaction rolls back and `f` is called
    ///
    /// Numbers 2 and 4 are not desirable. Number 2 can be handled by explicitly handling the error
    /// case and disabling the guard but there is nothing to do about number 4.
    pub async fn commit_and_then<F, R>(self, f: F) -> Result<R, sqlx::Error>
    where
        F: FnOnce() -> R + Send + 'static,
        R: Send + 'static,
    {
        let span = Span::current();

        task::spawn(async move {
            // IMPORTANT: `_committed` must live until `f` completes.
            let _committed = self.inner.commit().await?;
            let result = span.in_scope(f);
            Ok(result)
        })
        .await
        .unwrap()
    }
}

impl Deref for WriteTransaction {
    type Target = ReadTransaction;

    fn deref(&self) -> &Self::Target {
        &self.inner
    }
}

impl DerefMut for WriteTransaction {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.inner
    }
}

impl std::fmt::Debug for WriteTransaction {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
        write!(f, "WriteTransaction{{ inner:{:?} }}", self.inner)
    }
}

impl_executor_by_deref!(WriteTransaction);

/// Creates a new database and opens a connection to it.
pub(crate) async fn create(path: impl AsRef<Path>) -> Result<Pool, Error> {
    let path = path.as_ref();

    if fs::metadata(path).await.is_ok() {
        return Err(Error::Exists);
    }

    create_directory(path).await?;

    let connect_options = SqliteConnectOptions::new()
        .filename(path)
        .create_if_missing(true);

    let pool = Pool::create(connect_options).await.map_err(Error::Open)?;

    migrations::run(&pool).await?;

    Ok(pool)
}

/// Creates a new database in a temporary directory. Useful for tests.
#[cfg(test)]
pub(crate) async fn create_temp() -> Result<(TempDir, Pool), Error> {
    let temp_dir = TempDir::new().map_err(Error::CreateDirectory)?;
    let pool = create(temp_dir.path().join("temp.db")).await?;

    Ok((temp_dir, pool))
}

/// Opens a connection to the specified database. Fails if the db doesn't exist.
pub(crate) async fn open(path: impl AsRef<Path>) -> Result<Pool, Error> {
    let connect_options = SqliteConnectOptions::new().filename(path);
    let pool = Pool::create(connect_options).await.map_err(Error::Open)?;

    migrations::run(&pool).await?;

    Ok(pool)
}

/// Opens a connection to the specified database. Fails if the db doesn't exist.
pub async fn open_without_migrations(path: impl AsRef<Path>) -> Result<Pool, Error> {
    let connect_options = SqliteConnectOptions::new().filename(path);
    let pool = Pool::create(connect_options).await.map_err(Error::Open)?;

    Ok(pool)
}

async fn create_directory(path: &Path) -> Result<(), Error> {
    if let Some(dir) = path.parent() {
        fs::create_dir_all(dir)
            .await
            .map_err(Error::CreateDirectory)?
    }

    Ok(())
}

// Explicit cast from `i64` to `u64` to work around the lack of native `u64` support in the sqlx
// crate.
pub(crate) const fn decode_u64(i: i64) -> u64 {
    i as u64
}

// Explicit cast from `u64` to `i64` to work around the lack of native `u64` support in the sqlx
// crate.
pub(crate) const fn encode_u64(u: u64) -> i64 {
    u as i64
}

#[derive(Debug, Error)]
pub enum Error {
    #[error("failed to create database directory")]
    CreateDirectory(#[source] io::Error),
    #[error("database already exists")]
    Exists,
    #[error("failed to open database")]
    Open(#[source] sqlx::Error),
    #[error("failed to execute database query")]
    Query(#[from] sqlx::Error),
}

async fn get_pragma(conn: &mut Connection, name: &str) -> Result<u32, Error> {
    Ok(sqlx::query(&format!("PRAGMA {}", name))
        .fetch_one(&mut *conn)
        .await?
        .get(0))
}

async fn set_pragma(conn: &mut Connection, name: &str, value: u32) -> Result<(), Error> {
    // `bind` doesn't seem to be supported for setting PRAGMAs...
    sqlx::query(&format!("PRAGMA {} = {}", name, value))
        .execute(&mut *conn)
        .await?;

    Ok(())
}

#[cfg(test)]
mod tests {
    use super::*;

    // Check the casts are lossless

    #[test]
    fn decode_u64_sanity_check() {
        // [0i64,     i64::MAX] -> [0u64,             u64::MAX / 2]
        // [i64::MIN,    -1i64] -> [u64::MAX / 2 + 1,     u64::MAX]

        assert_eq!(decode_u64(0), 0);
        assert_eq!(decode_u64(1), 1);
        assert_eq!(decode_u64(-1), u64::MAX);
        assert_eq!(decode_u64(i64::MIN), u64::MAX / 2 + 1);
        assert_eq!(decode_u64(i64::MAX), u64::MAX / 2);
    }

    #[test]
    fn encode_u64_sanity_check() {
        assert_eq!(encode_u64(0), 0);
        assert_eq!(encode_u64(1), 1);
        assert_eq!(encode_u64(u64::MAX / 2), i64::MAX);
        assert_eq!(encode_u64(u64::MAX / 2 + 1), i64::MIN);
        assert_eq!(encode_u64(u64::MAX), -1);
    }
}